

SC-81M

FLUX CORED ARC WELDING CONSUMABLE FOR LOW-TEMPERATURE SERVICE STEEL

2022.02

HYUNDAI WELDING CO., LTD.

Specification

AWS A5.29 E81T1-Ni1M-J H4

(AWS A5.29M E551T1-Ni1M-J H4)

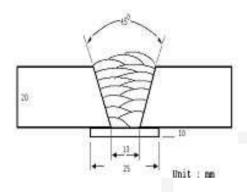
EN ISO 17632-A T 50 6 1Ni P M21 1 H5

Applications

All position welding for construction machinery, bridge structures and storage tanks

Characteristics on Usage SC-81M is an all position flux cored wire designed for Ar+20~25% CO2 shielding. You can get smooth arc, and low spatter, good weldability. The weld metal impact values at $-60\,^{\circ}\mathrm{C}\,(-76\,^{\circ}\mathrm{F})$ is excellent and has good bead appearance, slag covering is uniform and easy to remove.

Note on Usage


- 1. For preheating guidelines, please refer to your local standards and codes relative to your best practices.
- 2. Use Ar+20~25% CO₂ gas.

Mechanical Properties & Chemical Composition of All Weld Metal

*** Welding Conditions**

Method by AWS Spec.

Welding Position : 1G(PA)

Diameter(mm) : 1.2mm(0.045in)

Shielding Gas : Ar+20%CO₂

Amp./ Volt. : 270~280 /29~30

Stick-Out(mm) : 20~25 (0.79~0.98in)

Pre-Heat(℃) : R.T.

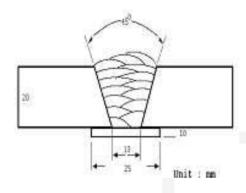
[Joint Preparation & Layer Details]

Interpass Temp.(°C) : $150 \pm 15 (302 \pm 59 \text{ °F})$

❖ Mechanical Properties of all weld metal

Consumable	Tensile Test			CVN Impact Test J(ft·lbs)	
SC-81M	YS Mpa(lbs/in²)	TS Mpa((lbs/in²)	EL(%)	-40℃ (-40°F)	-60℃ (-76°F)
	540(78,000)	580(84,000)	25.0	105(77)	73(54)
AWS A5.29 E81T1-Ni1M-J H4	≥470 (68,000)	550~690 (80,000~100,000)	≥ 19	≥27 at −40 ℃	

Chemical Analysis of all weld metal(wt%)


Consumable	С	Si	Mn	Р	S	Ni
SC-81M	0.04	0.32	1.15	0.008	0.008	0.90
AWS A5.29 E81T1-Ni1M-J H4	≤0.12	≤0.80	≤1.75	≤0.03	≤0.03	0.8~1.1

Mechanical Properties & Chemical Composition of All Weld Metal

Welding Conditions

Method by AWS Spec.

[Joint Preparation & Layer Details]

Welding Position : 1G(PA)

Diameter(mm) : 1.4mm(0.052in)

Shielding Gas : Ar+20%CO₂

Amp./ Volt. : 300~315 /29~30

Stick-Out(mm) : 20~25 (0.79~0.98in)

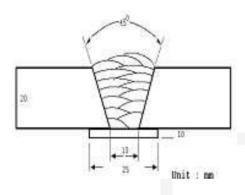
Pre-Heat(°C) : R.T.

Interpass Temp.(°C) : $150 \pm 15 (302 \pm 59 °F)$

Mechanical Properties of all weld metal

Consumable	Tensile Test			CVN Imp J(ft	act Test lbs)
SC-81M	YS Mpa(lbs/in²)	TS Mpa((lbs/in²)	EL(%)	-40℃ (-40°F)	-60℃ (-76°F)
	545(79,000)	585(85,000)	26.2	102(75)	70(52)
AWS A5.29 E81T1-Ni1M-J H4	≥470 (68,000)	550~690 (80,000~100,000)	≥ 19		(20) C(-40°F)

Chemical Analysis of all weld metal(wt%)


Consumable	С	Si	Mn	Р	S	Ni
SC-81M	0.04	0.33	1.16	0.008	0.008	0.90
AWS A5.29 E81T1-Ni1M-J H4	≤0.12	≤0.80	≤1.75	≤0.03	≤0.03	0.8~1.1

Mechanical Properties & Chemical Composition of All Weld Metal

*** Welding Conditions**

Method by AWS Spec.

[Joint Preparation & Layer Details]

Welding Position : 1G(PA)

Diameter(mm) : 1.6mm(1/16 in)

Shielding Gas : $Ar+20\%CO_2$

Amp./ Volt. : 320~330 /29~30

Stick-Out(mm) : 20~25 (0.79~0.98in)

Pre-Heat($^{\circ}$ **)** : R.T.

Interpass Temp.(°) : $150 \pm 15 (302 \pm 59 °F)$

❖ Mechanical Properties of all weld metal

Consumable	Tensile Test			CVN Imp	
SC-81M	YS Mpa(lbs/in²)	TS Mpa((lbs/in²)	EL(%)	-40℃ (-40°F)	-60℃ (-76°F)
	550(80,000)	590(86,000)	26.0	96(71)	67(49)
AWS A5.29 E81T1-Ni1M-J H4	≥470 (68,000)	550~690 (80,000~100,000)	≥ 19	≥ 27 at –40℃	

Chemical Analysis of all weld metal(wt%)

Consumable	С	Si	Mn	Р	S	Ni
SC-81M	0.04	0.34	1.15	0.008	0.008	0.91
AWS A5.29 E81T1-Ni1M-J H4	≤0.12	≤0.80	≤1.75	≤0.03	≤0.03	0.8~1.1

Welding Efficiency

Deposition Rate & Efficiency

Consumable	Welding (Conditions	Wire Feed Speed	Deposition	Deposition Rate	
(size)	Amp.(A)	Volt.(V)	m/min (in/min)	Efficiency(%)	kg/hr(lb/hr)	
	200	26	10.2(400)	87~89	3.1(6.8)	
1.2mm (0.045in)	250	28	13.3(525)	88~89	4.3(9.5)	
	300	32	15.3(600)	88~90	5.8(12.8)	
	250	28	7.6 (300)	85~87	3.6(7.9)	
1.4mm (0.052in)	300	32	10.2 (400)	86~88	4.7(10.4)	
	330	36	12.8 (500)	87~89	6.3(13.9)	
	280	31	6.4 (250)	86~88	4.0(8.8)	
1.6mm	330	33	7.6 (300)	86~89	4.6(10.1)	
(1/16 in)	350	34	8.1 (320)	87~89	5.6(12.3)	
	400	38	9.2 (360)	88~90	6.5(14.3)	
	Remark			Deposition efficiency =(Deposited metal weight/	Deposition rate =(Deposited metal weight/	
				Wire weight used)×100	Welding time, min.)×60	

^{*} Shielding Gas : Ar+20%CO₂

Diffusible Hydrogen Content

Welding Conditions

Diameter(mm) : **1.6(1/16in)** Amps(A) / Volts(V) : 310 / 32

Flow Rate(ℓ /min.) : 20 Welding Speed : 35 cm/min

Welding Position : 1G(PA) (13.8 in/min)

Current Type & Polarity : DC(+)

Hydrogen Analysis Using Gas Chromatography Method

Hydrogen Evolution Time : 72 hrs

Evolution Temp. : $45 \, ^{\circ} (113 \, ^{\circ} F)$ Barometric Pressure : $780 \, \text{mm-Hg}$

❖ Result(mℓ/100g Weld Metal)

X1	X2	Х3	X4
3.4	3.5	3.3	3.4

Average Hydrogen Content 3.4 ml / 100g Weld Metal

Proper Current Range

Consumable	Shielding Gas	Welding Position	Current
		Flat	120~300 Amp
1.2mm (0.045in)	Ar+20%CO ₂	V-up Over head	120~260 Amp
		V-down	140~300 Amp
		Flat	160~350 Amp
1.4mm (0.052in)	Ar+20%CO ₂	V-up Over head	140~270 Amp
		V-down	160~320 Amp
		Flat	180~380 Amp
1.6mm (1/16 in)	Ar+20%CO ₂	V-up 160~320	160~320 Amp
		V-down	180~360 Amp

* F No. & A No.

F No	A No
6	10